

Peg Solitaire Learning Machine

By Brandon Druschel

What is 'Peg Solitaire'?

Example of a peg solitaire game being played on a 'plus'-(+) shaped board \rightarrow

- **Peg solitaire** is a board game in which one player moves a set of pegs on a board with holes
- A standard game fills the entire board with pegs except for the central hole. The objective is to empty the entire board except for a single peg in the central hole
- To remove a peg, the player must move a peg orthogonally over an adjacent peg into a hole two positions away, then the jumped peg is removed
- If a legal move is no longer possible, the game ends
- For this project, I chose to represent the **triangular board** due to its simplicity and popularity in restaurant chains, e.g. Cracker Barrel

Implementing a Peg Board (Task 1-3)

• A single **position** on the board is represented as a *list* containing (**r c s**)

- r = row coordinate; top to bottom
- \circ c = column coordinate; left to right
- o s = state; '*' = peg and 'o' = no peg
- The **triangular board** itself is made of up a list of coordinates; a *list of lists*
- Movement directions : left (L), right (R), up-left (UL), up-right (UR), down-left (DL), down-right (DR)

Creating a Playable Game (Task 4-7)

- The following **attributes** help define the rules of the game:
 - The **neighbor peg** is the peg to be jumped over (e.g. $(10)^{*}$) is the neighbor up-right of $(20)^{*}$)
 - The jump position is the position in which the peg would end up after it jumps over the neighbor peg. This position must be *empty* (s = ' o ')
 - A **peg count** simply tracks how many pegs remain on the board
- There are **two methods** which track whether the game is finished with *one* peg left ('goalp') or finished with *more than one* peg left ('failp'). In both cases, each position is "scanned" to see if any more moves can be done in any position

↑ Two examples of the program playing a full game, with 2 and 4 pegs remaining respectfully. Note how no more legal moves can be done in either case.

Implementing Genetic Algorithm Attributes (Task 8-15)

- Mutation method
 - Change one random index to a different, legal move, and modify the rest of the moves accordingly.
- Crossover method
 - Change one random index in the *mother* individual to a move that is present in the *father* individual, and modify the rest of the moves accordingly
- Fitness metric
 - Simply the number of remaining pegs left on the board (for now)
 - Plan on implementing a second fitness metric based on distance between remaining pegs at the end of a game
- Rest of development was based closely around the 'RBG' genetic algorithm from CSC 416
 - \circ In particular, Tasks 6-11 of the RBG GA
 - Individual + Population Class
 - Incorporating mutation
 - о Сору
 - Implementing crossover
- Final step (Task 16) in progress, which will bring it all together

Implementing Genetic Algorithm Attributes (Task 8-15)

• Mutation method

[2]> (setf p (play-full))
(((2 0 *) UR) ((3 2 *) UL) ((4 1 *) UR) ((1 0 *) DR) ((4 3 *) L) ((3 3 *) L)
((3 0 *) R) ((1 1 *) DR) ((4 0 *) R) ((3 3 *) L) ((4 2 *) UL))
[3]> (setf p (mutate p))
(((2 0 *) UR) ((3 2 *) UL) ((4 1 *) UR) ((1 0 *) DR) ((4 3 *) L) ((4 0 *) UR)
((3 3 *) L) ((2 0 *) DR) ((1 1 *) DR) ((4 2 *) L) ((4 4 *) UL))

• **Crossover** method

```
[2]> m
(((2 0 *) UR) ((3 2 *) UL) ((0 0 *) DL) ((3 0 *) R) ((3 3 *) L) ((1 1 *) DR)
((4 4 *) UL) ((4 2 *) R) ((2 0 *) DR) ((4 1 *) R) ((4 4 *) L))
[3]> f
(((2 0 *) UR) ((4 2 *) UL) ((1 1 *) DL) ((4 0 *) R) ((2 0 *) DL) ((4 2 *) UL)
((4 3 *) UL) ((3 3 *) UL)
((0 0 *) DR))
[4]> ( crossover m f )
(((2 0 *) UR) ((3 2 *) UL) ((0 0 *) DL) ((3 0 *) R) ((3 3 *) L) ((1 1 *) DR)
((4 4 *) UL) ((4 2 *) R) ((4 0 *) R))
[5]> ( crossover m f )
(((2 0 *) UR) ((3 2 *) UL) ((0 0 *) DL) ((3 0 *) R) ((4 3 *) UL) ((4 1 *) R)
((2 0 *) UR) ((3 2 *) UL) ((0 0 *) DL) ((3 0 *) R) ((4 3 *) UL) ((4 1 *) R)
((4 4 *) L) ((1 1 *) DL) ((2 2 *) DR))
```

• Fitness metric

```
[2]> (setf x (play-full) )
-- GAME BOARD--
    0
   0 0
  00*
0000
* 0 * 0 0
(((2 0 *) UR)
              ((3 2
 ((4 2 *) R)
             ((2 0 *) DR)
[3]> ( fitness x )
3
[4]> (setf x (play-full) )
-- GAME BOARD--
    0
   0 0
 0000
* 0 0 0 *
(((2 0 *) UR) ((4 2 *) UL) ((1 1
 ((3 3 *) UL) ((0 0 *) DR))
[5]> ( fitness x )
5
```

Inspiration - Why Use Genetic Algorithms to Optimize Game Playing?

- Genetic algorithms have actually been used to play games since its inception
 - In 1963, **Nils Aall Barricelli** considered a pioneer in artificial life research simulated the evolution of the ability to play a simple game

Gen 95 species 2 genome 1 (0%)

Max Fitness:

Fitness: 552

- **'Marl/O'** is a machine learning program by SethBling that can complete a level in *Super Mario* games using neural networks and **genetic algorithms**
 - Specifically utilizes the "NEAT" algorithm; NeuroEvolution of Augmenting Topologies
 - Proof that genetic algorithms can be utilized successfully even in a video game

Examples of the 'Marl/O' program playing two separate Mario games. Note how the program tracks generations, fitness, and max fitness

 \rightarrow

Shortest solution to triangular variant					[hide
* = peg to move next; α = hole created by move; o = jumped peg removed; * = hole filled by jumping					
-	-		*	×	
				o ¤	
		*	x · ·	* 0 -	
			· o · ·	* * - *	
* · ₀ · ·	× • • •	o * o ¤ ·	0 • • 0 •	0 · · 0 ·	
0	0	0	0	0	
* *	* *	H H	0.0	0 0	
0 0 0	o * *	000	00*	o o ¤	
X · · X	0000	00**	00.0	0000	
• * * • ·	o ¤ ¤ o ·	0000*	0000	00*00	

- **The Pagoda function** is useful for showing the infeasibility of a given, generalized, peg solitaire problem.
 - A solution for finding a pagoda function is formulated as a *linear programming problem* and solvable in *polynomial* time.
 - With more time, the **pagoda function** may have been useful in determining the outcome of a game earlier, thus reducing the need for playing entire games every time a new individual is created
- In 1999 peg solitaire was completely solved on a computer using an *exhaustive search* through all possible variants. It was achieved making use of the symmetries, efficient storage of board constellations and hashing.
 - Brute force methods are, as expected, totally feasible for peg solitaire. However, they are likely far less efficient than utilizing a GA.
- Shortest solution on a triangular board
 - A solution where the final peg arrives at the **initial empty hole** is *not possible* for a hole in one of the three central positions (corners). An empty corner-hole setup can be solved in **ten moves**.

Interesting Findings

Resources

- Peg Solitaire https://en.wikipedia.org/wiki/Peg_solitaire
- Genetic Algorithm https://en.wikipedia.org/wiki/Genetic_algorithm
- Nils Aall Barricelli https://en.wikipedia.org/wiki/Nils_Aall_Barricelli
- Marl/O https://www.youtube.com/watch?v=qv6UVOQ0F44
- 'NEAT' Genetic Algorithm http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
- 'Modelling and Solving English Peg Solitaire' https://hugues-talbot.github.io/files/Peg_Solitaire_1.pdf
- My Project Specifications http://pi.cs.oswego.edu/~bdrusche/coursework/csc466/assignments/Project%20Specifications.pdf

Questions or Comments?