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What is ‘Peg Solitaire’? 

● Peg solitaire is a board game in which one player moves a set of pegs on a 

board with holes

● A standard game fills the entire board with pegs except for the central hole. 

The objective is to empty the entire board except for a single peg in the 

central hole

● To remove a peg, the player must  move a peg orthogonally over an adjacent 

peg into a hole two positions away, then the jumped peg is removed

● If a legal move is no longer possible, the game ends

● For this project, I chose to represent the triangular board due to its simplicity 

and popularity in restaurant chains, e.g. Cracker Barrel

Example of a peg solitaire game being 

played on a ‘plus’-( + ) shaped board → 



● A single position on the board is represented as a list containing (r c s)
○ r = row coordinate; top to bottom
○ c = column coordinate; left to right
○ s = state; ‘ * ’  = peg and ‘ o ’ = no peg

● The triangular board itself is made of up a list of coordinates; a list of lists
● Movement directions : left (L), right (R), up-left (UL), up-right (UR), down-left (DL), down-right (DR)

Implementing a Peg Board (Task 1-3)

← The *board* list, formatted in 
such a way that is easily 
comprehensible

← The current visualization of the board in the 
Lisp program



Creating a Playable Game (Task 4-7) 
● The following attributes help define the rules of the game:

○ The neighbor peg is the peg to be jumped over ( e.g. ‘(1 0 *)’ is the neighbor up-right of ‘(2 0 *)’ )
○ The jump position is the position in which the peg would end up after it jumps over the neighbor peg. This 

position must be empty (s = ‘ o ‘)
○ A peg count simply tracks how many pegs remain on the board

● There are two methods which track whether the game is finished with one peg left (‘goalp’) or 

finished with more than one peg left (‘failp’). In both cases, each position is “scanned” to see if any 

more moves can be done in any position

↑ Two examples of the program playing a full game, with 2 and 4 pegs remaining 
respectfully. Note how no more legal moves can be done in either case.



Implementing Genetic Algorithm Attributes 
(Task 8-15)

● Mutation method
○ Change one random index to a different, legal move, and modify the rest of the moves accordingly.

● Crossover method
○ Change one random index in the mother individual to a move that is present in the father individual, and 

modify the rest of the moves accordingly

● Fitness metric
○ Simply the number of remaining pegs left on the board (for now)
○ Plan on implementing a second fitness metric based on distance between remaining pegs at the end of 

a game

● Rest of development was based closely around the ‘RBG’ genetic algorithm from CSC 416
○ In particular, Tasks 6-11 of the RBG GA
○ Individual + Population Class
○ Incorporating mutation
○ Copy
○ Implementing crossover

● Final step (Task 16) in progress, which will bring it all together



Implementing Genetic Algorithm Attributes 
(Task 8-15)

● Mutation method

● Crossover method

● Fitness metric



Inspiration - Why Use Genetic Algorithms to 
Optimize Game Playing?
● Genetic algorithms have actually been used to play games since its inception

○ In 1963, Nils Aall Barricelli – considered a pioneer in artificial life research – simulated the 
evolution of the ability to play a simple game

● ‘MarI/O’ is a machine learning program by SethBling that can complete a level in Super 
Mario games using neural networks and genetic algorithms

○ Specifically utilizes the “NEAT” algorithm;  NeuroEvolution of Augmenting Topologies
○ Proof that genetic algorithms can be utilized successfully even in a video game

← 
Examples of the ‘MarI/O’ 
program playing two separate 
Mario games. Note how the 
program tracks generations, 
fitness, and max fitness

→ 



Interesting Findings

● The Pagoda function is useful for showing the infeasibility of a given, generalized, peg 

solitaire problem.
○ A solution for finding a pagoda function is formulated as a linear programming problem and solvable in 

polynomial time.
○ With more time, the pagoda function may have been useful in determining the outcome of a game 

earlier, thus reducing the need for playing entire games every time a new individual is created

● In 1999 peg solitaire was completely solved on a computer using an exhaustive search 

through all possible variants. It was achieved making use of the symmetries, efficient 

storage of board constellations and hashing.
○ Brute force methods are, as expected, totally feasible for peg solitaire. However, they are likely far 

less efficient than utilizing a GA.

● Shortest solution on a triangular board
○ A solution where the final peg arrives at the initial empty hole is not possible for a hole in one of the 

three central positions (corners). An empty corner-hole setup can be solved in ten moves.



Resources

● Peg Solitaire - https://en.wikipedia.org/wiki/Peg_solitaire
● Genetic Algorithm - https://en.wikipedia.org/wiki/Genetic_algorithm 
● Nils Aall Barricelli - https://en.wikipedia.org/wiki/Nils_Aall_Barricelli
● MarI/O - https://www.youtube.com/watch?v=qv6UVOQ0F44 

● ‘NEAT’ Genetic Algorithm - http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

● ‘Modelling and Solving English Peg Solitaire’ - https://hugues-talbot.github.io/files/Peg_Solitaire_1.pdf

● My Project Specifications - http://pi.cs.oswego.edu/~bdrusche/coursework/csc466/assignments/Project%20Specifications.pdf



Questions or Comments?


