Tq-C-P-A-B-@|-Problem Set

Will Schell

Problem set from Chapter 3 GEB

1) Write down the axioms schema and the three shortest axioms in the tqsystem

- The axiom is:

xt-qx, whenever x is a hyphen-string.

- The three shortest axioms are:

- a) t-q
- b) -t-q-
- c) --t-q--

2) Write down the sole rule of inference for the tq-system and apply it to the well-formed string -----t----q-----

- Rule of Inference: Suppose that x, y, and z are all hyphen-strings and suppose x ty qz is an old theorem. Then xty-qzx is a new theorem.

-----t-----q----- becomes -----t-----q------

3) Reasoning in I-mode, argue that the string you produced in the previous item is not a theorem in the tq-system.

- This is not a theorem because the hyphen string x multiplied by hyphen strings y does not equal the hyphen string z.

4) Working in the M-mode, show that -----t---q------ is a theorem in the tq-system.

1) -----t-q----- (axiom)

- 2) ----t-q----- (from 1 by the rule of inference)
- 3) -----t---q------ (from 2 by the rule of inference)

5) What are the two rules of the C-system?

a) Suppose x, y, and z are hyphen strings. If x-ty-qz is a theorem, then C z is a theorem.

b) Suppose x is a hyphen-string. If Cx is not a theorem, then Px is a theorem.

6) Working within the C-system, argue that C----- is a theorem of the system.

1)	t-q	(axiom)
2)	tq	(from 1 by rule)
3)	C	(from 2 by rule 1 in C- system)

7) Does adding the following rule to the C-system constitute a Post production system for determining primes? Please explain your response.

- Suppose x is a hyphen string. If Cx is not a theorem, then Px is a theorem. The addition of the proposed rule does not create a Post production system due to it not allowing for manipulation of strings.

8) Hofstadter writes: When a figure or "positive space" (e.g., a human form, or a letter, or a still life is drawn inside a frame, an unavoidable consequence is that its complementary shape-also called the "ground", or "background", or "negative space"-has also been drawn.

According to this view, the quiche pan shown below that I computationally rendered would be considered negative space. Explain how this is so.

- The white space is considered as negative space because black shapes, also known as the positive space, are between the border and the middle.

9) Consider the A-system as defined by the following axiom and theorem:

- Axiom: A--

- Rule: Suppose that x is a hyphen-string. If Ax is a theorem, so is Ax--

Answer the following questions with respect to the A-system:

a) Show that A----- is a theorem of the A-system by working within the system

L)	A	(axiom)
----	---	---------

2)	A	(from	1	by	the	rule)	
----	---	-------	---	----	-----	-------	--

- 3) A----- (from 2 by the rule)
- 4) A----- (from 3 by the rule)

b) Specify a decision procedure for determining theoremhood in the A-system.

- If the number of hyphens must be even.

c) Provide an I-mode argument that the string A----- is not a theorem of the A-system.

- If there is an odd number of hyphens, then it is not a theorem.

d) What subset of the natural numbers do you think it was my intent to capture with the A-system?

- All positive and even integers above 2 are captured within the A-system.

10) Consider the as yet to be formally defined by B-system which you should imagine is intended to capture precisely all of the natural numbers that the A-system does not capture.

a) Propose, by analogy with the rule on page 66 of GEB, an invalid rule for producing theorems in the B-system.

- Suppose \boldsymbol{x} is a hyphen string. If $\boldsymbol{A}\boldsymbol{x}$ is not a theorem, then $\boldsymbol{B}\boldsymbol{x}$ is a theorem

b) Define a (valid) Post production system for the B-system in terms of the one axiom and one rule

- Axiom: B-

- Rule: Suppose that \boldsymbol{x} is a hyphen-string. If $B\boldsymbol{x}$ is a theorem, so is $B\boldsymbol{x}\text{--}$

c) Derive B----- within the B-system

- 1) B- (axiom)
- 2) B--- (from 1 by the rule)
- 3) B---- (from 2 by the rule)
- 4) B----- (from 3 by the rule)
- 5) B----- (from 4 by the rule)
- 6) B----- (from 5 by the rule)

d) What subset of natural numbers does the B-system capture?

- All odd numbers.

11) Under interpretation, what does the A-system theorem A----- say? Under interpretation what does the B-system theorem B------ say?

- The given A-system theorem says that 8 is an even number.

- The B-system theorem says that 11 is an odd number.

12) What does it mean for a set to be "recursively enumerable?" What does it mean for a set to be "recursive?"

- "recursively enumerable" means that a set of strings can be generated by typographical rules

- A set is "recursive" if the background of a set is a figure on its own.

13) Argue that the set of even numbers is recursively enumerable.

- The set of even numbers is recursively enumerable because it can be generated by typographical rules.

14) Argue that the set of even numbers is recursive.

- The set of even numbers, A-system, is recursive because the set of odd numbers, B-system, is also recursively enumerable.

15) Argue that the set of prime numbers is recursively enumerable.

- The set of prime numbers is recursively enumerable because it can be generated by typographical rules.

16) Argue that the set of prime numbers is recursive.

- The set of prime numbers is recursive because the set of non-prime numbers is also recursively enumerable.

17) In a sentence or two, explain why you think that I am not asking you in this problem set to derive something like P----with the P-system.

- To derive a theorem of the P-system one would first have to check each number for whether it is divisible or not.

18) Consider the following post production system, a system that we call the 0|-system. Answer the following questions about the 0|-system:

a) How many axioms in the system? How many rules in the system? How many theorems in the system?

- One axiom
- 34 rules
- Infinite theorems

b) Show that the @||-|||-||- is a theorem of the @|-system performing derivation within the system.

1)	@ - -	(axiom)					
2)	@ - -	(from	1	by	rule	6)	
3)	@ - -	(from	2	by	rule	5)	
4)	@ - - -	(from	3	by	rule	2)	
5)	@ - - -	(from	4	by	rule	7)	
6)	@ - - -	(from	5	by	rule	5)	
7)	@ - - -	(from	6	by	rule	3)	
8)	@ - - - -	(from	7	by	rule	1)	

c) Show that CDEFGABC is a theorem of @|-system by performing a derivation within the system.

1)	@ - -	(axion	n)			
2)	C - -	(from	1	by	rule	8)
3)	CD - -	(from	2	by	rule	11)
4)	CDE- -	(from	3	by	rule	15)
5)	CDEF -	(from	4	by	rule	20)
6)	CDEFG -	(from	5	by	rule	21)
7)	CDEFGA -	(from	6	by	rule	25)
8)	CDEFGAB-	(from	7	by	rule	29)
9)	CDEFGABC	(from	8	by	rule	34)

d) Show that GABCDEXG is a theorem of $\ensuremath{\mathbb{G}}\xspace|$ -system by performing a derivation within the system.

1)	@ - -	(axion	n)			
2)	G - -	(from	1	by	rule	9)
3)	GA - -	(from	2	by	rule	25)
4)	GAB- -	(from	3	by	rule	29)
5)	GABC -	(from	4	by	rule	34)
6)	GABCD -	(from	5	by	rule	11)
7)	GABCDE -	(from	6	by	rule	15)
8)	GABCDEX-	(from	7	by	rule	19)
9)	GABCDEXG	(from	8	by	rule	24)

e) Show that DEXGABVD is a theorem of @|-system by performing a derivation within the system.

1)	@ - -	(axion	n)			
2)	D - -	(from	1	by	rule	10)
3)	DE - -	(from	2	by	rule	15)
4)	DEX- -	(from	3	by	rule	19)
5)	DEXG -	(from	4	by	rule	24)
6)	DEXGA -	(from	5	by	rule	25)
7)	DEXGAB -	(from	6	by	rule	29)
8)	DEXGABV-	(from	7	by	rule	33)
9)	DEXGABVD	(from	8	by	rule	14)

f) What do you think I had in mind when I invented the system?

- It looks like it would be a form of musical represtentation